Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

Realisierung einer positiven User Experience mittels benutzerfreundlicher Ausgestaltung des Innenraums für automatisierte Fahrfunktionen

RUMBA

Neuroergonomic Insights on the Effects of Increasing Automation on Drivers' Cognitive States and Processes

M.Sc. Nikol Figalová **Department of Human Factors** Ulm University, Germany

Prof. Dr. Lewis Chuang Chair for "Human & Technology" Chemnitz University of Technology, Germany

Prof. Dr. Martin Baumann Head of Department of Human Factors Ulm University, Germany

Dr. Hans-Joachim Bieg Department CR/ADX1.1 Robert Bosch GmbH, Renningen, Germany

Motivation

- Nineteen million new (semi)automated cars expected in 2024¹
- Humans remain involved in operating (semi)automated cars
- Drivers must adapt to their **new role** behind steering wheel²

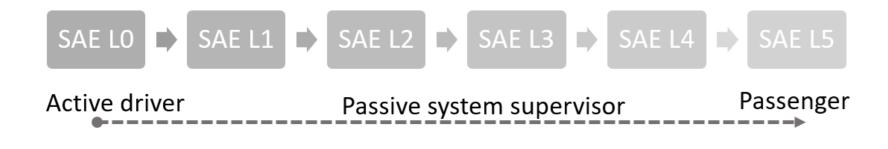


Figure 1 The changing role of the driver throughout the SAE levels of automation

- Comprehensive understanding how automation affects cognitive states and processes of the driver necessary for:
 - human-centred approach to HMI design³;
 - advanced driver-monitoring systems.

2 Cognitive States and Processes

Attentional Resource Allocation^{4, 5, 6}

- Limited pool of cognitive resources
- Dynamically allocated during task performance
- Spare capacity for environmental monitoring ullet

Mental

Degree of activation of the limited resource

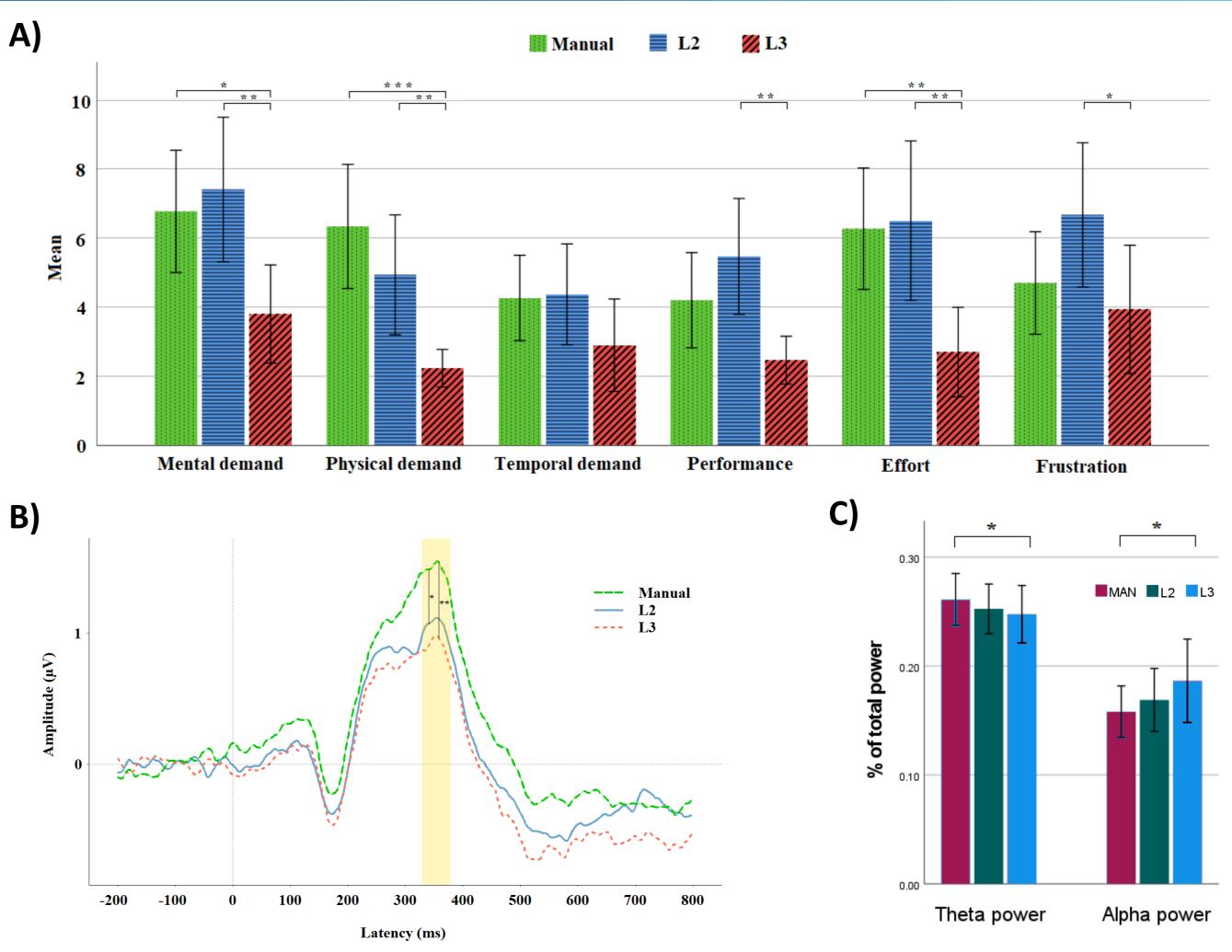


Figure 3 Significance is highlighted as * p < .05; ** p < .01, ***; p < .001; 3A - Mean NASA-TLX scores (error bars – 95% CI); **3B** - ERPs evoked by the passive oddball task; **3C** - Alpha and Theta power spectral density.

Lowest mental workload perceived in L3, no difference between

Workload⁷

pool during task performance

- Subjective experience **produced by cognitive** underload and monotony
- Often studied, but with major **limitations**:
 - Mostly simulator experiments, no real-world ERP studies reported
 - No direct comparison between automation levels

3 Methods

- **Passive auditory oddball task**^{9, 10} to evoke P300 ERP \bullet
 - Brain response to rare, unpredictable sounds
 - Index of cognitive processing competition for resources
 - P300 amplitude and mental workload inversely correlated
- **Test track experiment** with 30 participants (age M = 42.6, SD = 14.0)
- **Independent variable**: automation level (manual, L2, L3; randomised)
- **Dependent variables**: P300 amplitude, NASA-TLX¹¹, Karolinska Sleepiness Scale¹²

manual and L2 driving

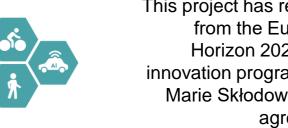
- Overall NASA-TLX score differed ($F(1.68, 48.81) = 10.10; p < .001; \omega^2 = 0.11$)
- Higher objective mental workload in manual driving
 - Theta power differed (*F*(2.00, 42.00) = 4.94, *p* = .012, ω^2 = 0.01)
- More cognitive resources utilised for auditory stimuli processing in manual driving
 - P300 amplitude differed (β = 0.33; SE = 0.12; t = 2.76; p = .008)
- More fatigue and sleepiness in L3 driving
 - Mean KSS score differed ($F(1.96, 43.15) = 3.39, p = .04, \omega^2 = 0.02$)
 - Alpha power differed (*F*(2.00, 42.00) = 4.42, *p* = .02, ω^2 = 0.02)

5 Discussion and Implications

- Automation leads to mental underload and passive fatigue
- Critical difference between L2 and L3 driving due to task shift
 - L3 drivers allowed to disengage!
- Interface design should account for **distracted**, sleepy drivers
- Advanced driver monitoring systems

Personal website (NF)

- Automation should dynamically adapt to drivers' current needs
- Optimisation of task load and engagement


Figure 2 The test track and the vehicle used in the experiment. The participant is wearing a 32-channel EEG cap and headphones for the auditory stimuli presentation.

6 Links & Acknowledgements

Literature

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement 860410

CanGontrols WIVW 🕷 studiokurbos CARIAD The Art of Image Understanding A VOLKSWAGEN GROUP COMPAN lu lui **Universität Stuttgart** spiegellnstitut ОНР BOSCH HOCHSCHULE DER MEDIEN Optik Haptik Prototyping GmbH Technik fürs Leben

projekt-rumba.de